
Sensor Web: Integration of Sensor Sensor Web: Integration of Sensor Sensor Web: Integration of Sensor Sensor Web: Integration of Sensor

Networks with Web and Cyber Networks with Web and Cyber Networks with Web and Cyber Networks with Web and Cyber

InfrastructureInfrastructureInfrastructureInfrastructure

Tomasz Kobialka, Rajkumar Buyya, Peng Deng, Lars Kulik, Marimuthu Palaniswami
University of Melbourne, Australia

ABSTRACT

As sensor network deployments grow and mature there emerge a common set of operations and

transformations. These can be grouped into a conceptual framework called Sensor Web. Sensor

Web combines cyber infrastructure with a Service Oriented Architecture (SOA) and sensor

networks to provide access to heterogeneous sensor resources in a deployment independent

manner. In this chapter we present the Open Sensor Web Architecture (OSWA), a platform

independent middleware for developing sensor applications. OSWA is built upon a uniform set of

operations and standard data representations as defined in the Sensor Web Enablement Method

(SWE) by the Open Geospatial Consortium (OGC). OSWA uses open source and grid

technologies to meet the challenging needs of collecting and analyzing observational data and

making it accessible for aggregation, archiving and decision making.

INTRODUCTION

Sensor networks are persistent computing systems composed of large numbers of sensor nodes.

These nodes communicate with one another over wireless low-bandwidth links and have limited

processing capacity. They work together to collect information about their surrounding

environment, which may include temperature, light or GPS information. As sensor networks

grow and their ability to measure real-time information in an accurate and reliable fashion

improves, a new research challenge, how to collect and analyze recorded information, presents

itself.

Deployment scenarios for sensor networks are countless and diverse, sensors may be

used for military applications, weather forecasting, tsunami detection, pollution detection and for

power management in schools and office buildings. In many of these cases the software

management tools for data aggregation and decision making are tightly coupled with each

application scenario. However, as these systems grow and mature, a set of common data

operations and transformations begin to emerge. All application scenarios will need to query a

sensor network and retrieve some observational data. Some scenarios may require information

from historic queries be stored in a repository for further analysis. They may require regular

queries to be scheduled and automatically dispatched without external operator intervention.

Scenarios may need to share information among themselves to aid in decision making tasks. For

example, a tsunami warning system may rely on water level information from two geographically

distributed sets of sensors developed by competing hardware vendors. These requirements present

significant challenges in resource interoperability, fault tolerance and software reliability. A

solution to these emerging challenges is to implement a set of uniform operations and a standard

representation for sensor data which will fulfill the software needs of a sensor network regardless

of the application or deployment scenario.

 A Service Oriented Architecture (SOA) allows us to describe, discover and invoke

services from heterogeneous platforms using XML and SOAP standards. Services can be defined

for common operations including data aggregation, scheduling, resource allocation and resource

discovery. We can exploit these properties by combing sensors and sensor networks with a SOA

to present sensors as important resources which can be discovered, accessed and where

applicable, controlled via the World Wide Web. We refer to this combination of technologies as

the Sensor Web. Taking this concept a step further, when interlinked, geographically distributed

services form what is called a Sensor Grid which is a key step in the integration of sensor

networks and the distributed computing platforms of SOA and Grid Computing. The integration

of Sensors Networks with the cyber infrastructure of Grid Computing brings several benefits to

the community. The heavy load of information processing can be moved from sensor networks to

the backend distributed systems. This separation is beneficial because it reduces the energy and

power needed by the sensors, allowing them to concentrate on sensing and sending information.

Cross-organizational collaboration is streamlined, because geographically distributed resources

can be accessed over common Grid protocols. Data produced by heterogeneous resources can be

combined with the aid of common XML formats, eliminating data incompatibility issues.

Figure 1 demonstrates an abstract vision of the Sensor Web; various sensors and sensor

nodes form a web view and are treated as available services to all the users who access the Web.

A researcher wishing to predict whether a tsunami is going to occur may query the entire Sensor

Web and retrieve the response either from real-time sensors that have been registered on the web

or from historical data in database. Data from all sources can be aggregated and used by modeling

or visualization tools to aid in tsunami prediction. This can be shared among collaborative parties

which may run algorithms or transformations over the raw data with the aid of grid resources. In

this way, individual resources can be coupled together to perform complex tasks which where not

previously achievable.

Figure 1. Abstract vision of the Sensor Web

Pollution Detection

Computer Grid

Instrument

Weather Forecast

Tsunami Detection

Researcher

Collaborators

Software, Model, Workflow

Sensor Nets

Historical Data

Driven by the growing demand for data sharing among geographically distributed

heterogeneous sensor networks the Open Geospatial Consortium (OGC) (Open Geospatial

Consortium, 2008), a geospatial standards authority, has defined the Sensor Web Enablement

(SWE) method. SWE includes specifications of interfaces and encodings that enable discovering,

accessing, and obtaining sensor data as well as sensor-processing services. These specifications

form the blueprint upon which the Sensor Web architecture can be developed. In this chapter we

present an implementation of the SWE method which we refer to as Open Sensor Web

Architecture (OSWA). We explore the technologies and challenges that have arisen from our

experiences with implementing the OSWA. A key aim of which is to provide a software

infrastructure that simplifies the task of application development for heterogeneous wireless

sensor networks. We present a critical analysis of the proposed standards developed for Sensor

Web by the OGC including the challenges and benefits of working with standards bodies. We

introduce the descriptions of core services and encodings which form the SWE, including Sensor

Model Language, Observations and Measurements, Transducer Model Language, Sensor

Observation Service, Sensor Planning Service, Web Notification Service and Sensor Alert

Service. We describe the design and architecture for each of the core services including the

challenges and solutions in developing services for heterogeneous sensor hardware and operating

system resources. We provide an analysis of a SunSPOT sensor network deployment using a

gesture recognition application deployed onto OSWA which includes design and implementation

details and results. Finally we conclude by proposing our vision for the future growth of Sensor

Web and our OSWA.

RELATED WORK

The integration of sensor networks and grid computing into a sensor grid was initially outlined by

Tham and Buyya (2005). Tham and Buyya introduced some early work in the field by proposing

the possible implementation of distributed information fusion and distributed autonomous

decision-making algorithms. Gaynor et al. (2004) presents a data-collection-network approach to

over come the technical problems of integrating resource constrained wireless sensors into grid

applications. This takes the form of network infrastructure with a grid API to access

heterogeneous sensor resources, referred to as Hourglass. Reichardt (2005) introduced the Sensor

Web Enablement (SWE) method which is an important step in connecting sensor networks with

web and cyber infrastructure. The method consists of a set of standard services and encoding

which can be used to build a framework for discovering and interacting with web-connected

sensors and for accessing sensor networks over the web.

52North (Simonis, 2004) is an initiative supported by the Institute for Geoinformatics at

the University of Munster, Germany. 52North has developed an open source software set based

on the SWE method. They have developed a set of Java web services based on the specifications

and data encodings as well as several SWE clients capable of communicating with services and

visualizing observational data. Services developed by 52North are deployed as standard Web

Services, and the focus of this project is on geospatial data. Sensor observations are retrieved

from a geographic information systems (GIS) database called PostGIS and encoded in SWE

descriptions. PostGIS acts as an interface between the service and the sensor systems. Interfaces

are defined so that new sensor databases or sources can be easily integrated into the architecture.

The GeoICT group at York University (Tao et al. 2004) has built an OGC SWE

compliant Sensor Web infrastructure. They have developed a Sensor Web client capable of

visualizing geospatial data, and a set of stateless Web Services called GeoSWIFT. The

GeoSWIFT Sensing Server implements all the interfaces of a typical observation service and is

capable of communicating with Webcams. They have also created an initial Registry Service.

Microsoft has released the MSR SenseWeb Project (Suman, Jie & Feng 2006) which

allows users to publish their sensor data on a portal web site. Microsoft has implemented its own

XML ontology along with a set of querying and tasking mechanisms. The ontology is influenced

by encodings introduced in the SWE method. Support is provided for sensors running TinyOS

and devices such as webcams. Microsoft is not affiliated with the OGC Consortium and there is

no support for Linux based operating systems. The current application of SenseWeb is limited to

publishing data, with little support for post processing, although it is likely that this will change

as the project matures.

OSWA is an implementation of the SWE method that extends the typical Web Service

interface definitions by implementing them as Stateful Web Services called WSRF. To our

knowledge there are no other published SWE implementations which use WSRF. WSRF opens

the door for OSWA services to communicate with data and computational grid resources. OSWA

supports heterogeneous sensor resources on TinyDB, SunSPOT, TinyOS and Linux.

Implementations such as GeoSWIFT and 52North typically support one or two sensor operating

systems, although they include constructs to extend these. Microsoft’s SenseWeb Project includes

support of TinyOS, but not Linux. No other SWE method implementations support the same

diversity of operating systems as OSWA. In OSWA we have introduced a caching method into

the service responsible for communicating with the sensor networks, this is a novel feature which

improves performance and has not been implemented by any other research groups. There are

many research groups working on sensor node middleware solutions. This is middleware which

resides on top of the sensor operating system. Some notable projects include MiLAN

(Heinzelman et al., 2004), Agilla (Fok, Roman & Lu, 2005), DSWare (Li, Son & Stankovic,

2003) and MagnetOS (Barr et al., 2002). It is our intention to expand OSWA into the sensor

operating system level and provide a lower level middleware solution. Future research

opportunities include developing a specific service for this purpose.

SENSOR WEB ENABLEMENT

As sensor network deployments grow obstacles begin to arise as an outcome of connecting

heterogeneous sensor resources and sharing observational data. A research challenge presents

itself in how to collect and analyze observational data from heterogeneous sensor networks and

make it accessible for aggregation, archiving and decision making.

The Sensor Web Enablement (SWE) method is defined by the Open Geospatial Consortium

(OGC); it includes specifications for interfaces, protocols and encodings which enable

implementation of interoperable and scalable service-oriented networks of heterogeneous sensor

systems and client applications (Botts, Percivall, Reed, & Davidson, 2007). OSWA is an

implementation of the SWE method which consists of the following XML encodings and

interfaces:

1. Sensor Model Language (SensorML) – A set of standard models and XML schema for

describing sensor systems and processes.

2. Observations and Measurements Schema (O&M) – A set of standard models and XML

schema for describing physical phenomena observed by sensor systems.

3. Transducer markup Language (TML) – A XML schema and encoding for describing real-

time streaming data recorded by transducers.

4. Sensor Observations Service (SOS) – A web service interface definition for requesting

observations from sensor networks and observation repositories.

5. Sensor Planning Service (SPS) – A web service interface definition for scheduling and

planning observational requests to sensor networks.

6. Web Notification Service (WNS) – A web service interface definition for the

transmission of messages between SWE services.

7. Sensor Alert Service (SAS) – A web service interface definition for publishing and

subscribing to alerts from sensors.

 Services and encodings presented in the SWE method are decoupled from any particular

deployment scenario. Interfaces are defined in such a manner that services responsible for

performing independent tasks can co-ordinate with each other to complete a common goal. When

coupled together services form a middleware layer which is capable of meeting the complex

demands of a heterogeneous multi-user system.

The implementation of service interfaces, based on a common set of standards, has many

advantages. Research groups or commercial companies are free to design their own service

implementations with the confidence that services will be capable of interacting with one another.

A group at the University of Melbourne can build a SPS while another group in Europe builds a

SOS. Service descriptions can be published on the World Wide Web so that both groups can use

each other’s resources, mutually benefiting both teams. Standard models for data encoding such

as SensorML, O&M and TML allow data to be shared among implementations and encourage

collaboration among SWE implementations. The use of XML as a basis for the schemas allows

for platform independence, software can be developed to run on Linux or Microsoft platforms

with the confidence that there will be no data incompatibilities. The rich semantic capability of

XML is well suited for data exchange, and capable of meeting growing needs in data

encapsulation.

The feedback of user experience and contribution of ideas to standards bodies is an important

step in developing a community and promoting broader adoption of standards among researchers

and businesses. Standards can only mature if they are underpinned by practical experience.

However, in an emerging technology such as Sensor Web where feedback from deployment

experience may be quite high, this presents an interesting challenge. Development efforts of

pioneering adopters who have invested in early standards may seem in vain, as their systems can

quickly cease to conform to the most recent standards release. The growth of XML tools is one

technology which can ease this burden. A variety of tools exist which facilitate the generation of

code from XML schemas. This it aids the developer by reducing some of the tedious works.

Ultimately, however, it is important that researchers, developers and standards bodies work

together to foster a strong community which can meet these challenges.

 Moodley & Simonis (2006) raise some drawbacks on the SWE approach. SWE does not

have a formal conceptual model that links all the services and encodings together. This

complicates the task of combing data with different granularities of time, space and measured

phenomena. The encodings lack explicit semantics, so it is difficult to discover if two or more

sets of observed phenomena are related. SensorML is an attempt at partially meeting this

requirement. However, although it can be used to describe the sensors themselves, it does not

provide a semantic description of the sensor and the phenomenon that it measures.

A vision for Sensor Web is to have service components working together to execute a user

request and achieve a common goal as illustrated in Figure 2. A SWE enabled client is interested

in retrieving observational data from a set of physical sensor nodes. The client knows the physical

location of the sensors it is interested in, the duration for which it is interested in reading the

observational data for (1 hour, 1 day, 1 week, etc.) and the observational data (light, acceleration,

temperature, etc.) it requires. The client constructs a request containing this information and sends

it to the SPS. The SPS then determines the Universal Resource Indicator (URI) of the appropriate

SOS instance by querying a registry of available services. When a SOS instance comes online it

automatically registers its capabilities with the Registry. If the client requires alerts, the SPS

subscribes to a SAS, if events described in the alert request occur the SAS will automatically

inform the WNS, which will perform an action or communicate this information back to the

client. Once the subscriptions have been dealt with the SPS will query the appropriate SOS

instance which will send the request to a sensor network and retrieve the observational result. The

SPS will notify the WNS that the request has been completed; the WNS will forward the location

of the observation data and the outcome of the plan to the SWE client. The client can then collect

the observational data.

SWE Client
SPS

SOS

1…n

SAS

Registry

WNS

SCS URI

Physical
Sensors

1. Request

Observation

query

4. Notification

SensorML &
TML descriptions

2. Subscribe

3. Query

Subscription

SWE Client
SPS

SOS

1…n

SAS

Registry

WNS

SCS URI

Physical
Sensors

1. Request

Observation

query

4. Notification

SensorML &
TML descriptions

2. Subscribe

3. Query

Subscription

Figure 2. Sensor Web Enablement Service interaction

The SWE presents a framework of service descriptions and XML schemas for communication

protocols. A research challenge lies in the design and architecture of the services and

specifications in a robust, efficient, platform independent and secure manner. In OSWA we

attempt to tackle this challenge, using the SWE method as a basis upon which to build robust

platform independent middleware.

OPEN SENSORWEB ARCHITECTURE

The OSWA is an implementation of the SWE method. The various components defined for

OSWA are outlined in Figure 3. We can identify four core layers namely Fabric, Services,

Development and Application. Fundamental services are provided by low-level components

whereas higher-level components provide tools for creating applications and management of the

lifecycle of data captured through sensor networks.

We use the SWE specifications as a blueprint upon which to base our Service layer. It is

important to feed back real-world deployment experience into the design and architecture of

services. Ultimately deployment experience should drive standards improvement, although, given

the nature of standards this often a lengthy process. It is through the early embrace of emerging

technologies that we can demonstrate their advantages that can then lead to improvements in

standards. With this in mind, we have implemented the Service layer as a set of WSRF services.

The move to WSRF grew out of a need to support on going queries which persist over time to

services. These queries require state information which is difficult to implement in traditional

Web Services. WSRF changes the dynamics of the SWE framework because services are no

longer passive sources for data to be pulled from. They are active data sources which push data

out to clients following a publish-subscribe paradigm. In future work we plan to explore the

introduction of additional services, such as an Operator Deployment Service which can facilitate

the deployment of application specific operators onto the physical sensor networks. Operators

could communicate with one another to form an overlay network which would be hardware

transparent and capable of enforcing efficient network communication, fault tolerance, resource

management and discovery, code management and energy saving schemes.

A key aim of the OSWA is to provide a software infrastructure that simplifies the task of

application development for heterogeneous wireless sensor networks. Once services have been

deployed we can further abstract the details of the services into interfaces which we couple

together to form an API, this forms the basis of the Application Development layer. Developers

can then use the API to build and deploy sensor applications, define relationships between

services and build job scheduling schemes through an interactive GUI. A challenge in the

development of services is to decouple as much application specific logic from the service code

base as possible. It can be difficult to develop services which are neutral to the deployment

scenario but still fulfill the idiosyncrasies of a particular application. For example, a set of

services which comprise a tsunami monitoring application may also be used for pollution

detection. Both of these applications may have the commonality of measuring water temperature

or displacement from the same set of sensors but have quite different post processing, scheduling

and result outcomes. A common approach is to express these idiosyncrasies using a XML model.

Although this often introduces additional computational processing time which may not be

acceptable in real time applications, it is important that XML models can provide the semantic

descriptions necessary to encapsulate this information.

The Sensor Fabric layer includes the Operating System and application code deployed

onto physical sensors which allows them to record observations and network among themselves.

Currently it is up to developers to program and deploy applications at the Fabric layer. This is not

an ideal situation as it requires the programmer to directly interface with the sensors and manage

the storage, processing, recording and transport of observation data. Furthermore physical access

to individual sensors is required, making it difficult to update code on large numbers of remote

sensing nodes. A solution to this problem is to deploy a sensor node middleware onto the sensors

themselves. The middleware acts as an interface to the underlying operating system and provides

code management, allocation and migration facilities. It is our intention to expand OSWA into the

fabric layer and provide a multi tier middleware solution. The Operator Deployment Service is a

step in this direction.

Technologies such as Java, Tomcat, XML, SOAP and Web Services provide great

opportunities for developing platform independent applications but come with a cost. OSWA is

written in the Java programming language. Java was chosen because it is a platform independent

object oriented programming language, software libraries released by sensor hardware vendors

such as Crossbow and Sun are available as Java Archived Repositories (JAR) files which are

simple to use. A disadvantage of using Java is that it is not as fast in its execution time when

compared to a lower-level language like C. Java comes with a memory and resource footprint

which may affect performance when large numbers of simultaneous requests are to be processed

by services. However, constant improvements in JVM technologies mean this situation can only

improve with time. The platform heterogeneity and ease of programming outweigh any

disadvantages associated with Java.

A challenge of OSWA is how to support ongoing sensor queries which persist over time

to heterogeneous sensor networks. Traditional Web Services are stateless, making it difficult to

create and maintain persistent relationships between services. Stateful Web Services provide

access to data values that persist over time and evolve as a result of Web Service interactions. The

Web Service Resource Framework (WSRF) defines conventions for managing state so that

applications discover, inspect and interact with stateful resources in standard and interoperable

ways, as defined by the OASIS standards body. Java WS Core is a component of the Globus

Toolkit, a set of software components for building distributed systems and it is a popular Grid

middleware platform. WSRF is underlined by a notification-subscription interaction pattern. A

client subscribes to a service resource and if any changes of state occur on that resource, the

service will automatically notify the client of the changes. This eliminates the need for a client to

poll the service for changes, as is typical from Web Services, thus reducing the network traffic

among services and improving performance. The introduction of WSRF is a key step forward in

evolving sensor web technologies into a sensor grid. Services are deployed on an Apache Tomcat

container. Tomcat is a servlet container which provides an environment for java code to run on. It

is written in Java and is a stable and free technology maintained by volunteers.

Sensor 2 Sensor 3

…

Sensor n

Operator

Sensor 1

OS

Operator

OS

Operator

OS

Operator

OS

Sensor

Fabric

Application

Services

Layer
WSRF

Sensor Observation

Service

WSRF WSRF

Web Notification

Service

Sensor Repository

Service

WSRF

Operator Deployment

Service

WSRF

ZigBee / IEEE 802.15.4 Protocols

Sensor Planning

Service

Application

Development

Layer
Eclispe / Visual Studio

Visual Programming

Tools

…
Third party

Tools

Applications

Layer Barrier

Reef

Deployment

Water

Information

Network

Tsunami

Detection…

Tomcat Servlet Container

Heterogeneous

Sensor Network

Sensor 2 Sensor 3

…

Sensor n

Operator

Sensor 1

OS

Operator

OS

Operator

OS

Operator

OS

Sensor

Fabric

Application

Services

Layer
WSRF

Sensor Observation

Service

WSRF WSRF

Web Notification

Service

Sensor Repository

Service

WSRF

Operator Deployment

Service

WSRF

ZigBee / IEEE 802.15.4 Protocols

Sensor Planning

Service

Application

Development

Layer
Eclispe / Visual Studio

Visual Programming

Tools

…
Third party

Tools

Applications

Layer Barrier

Reef

Deployment

Water

Information

Network

Tsunami

Detection…

Tomcat Servlet Container

Heterogeneous

Sensor Network

Figure 3. High level view of OSWA

 SOAP is used as the communication protocol between clients and services; SOAP relies

on XML as its message protocol and HTTP for negotiation and transportation. The use of XML

comes with a processing burden. Transformations need to be performed between the data views

of XML and Java object. Managing these relationships manually can be cumbersome and error

prone. One solution is to automatically generate Java objects from XML schema using a Java-to-

XML binding framework like XMLBeans.

 For the remainder of this section we discuss each of the components defined in SWE

method, introduce the architecture of these components as implemented by us in the OSWA, and

explore the relationships between services and encodings.

Sensor Model Language

SensorML is used to describe the processes and processing components associated with the

measurement and post-measurement transformation of observations (Botts, 2007). A process is

any entity that takes an input, applies a set of well-defined methods, and results in an output.

Processes can be linked together into executable process chains which describe the mapping from

input to output between components. This conceptual model for processes in SensorML is

illustrated in Figure 4. Process chains are useful in deriving high-level information, which is not

otherwise attainable from a single process. For example, a process chain could include the

retrieval of raw observational results and the on-demand processing of those results into more

meaningful output. SensorML is particularly useful in describing sensor systems and in the

processing and analysis of sensor observations. Observations recorded by sensor systems and

encoded in the O&M specification can be encoded within SensorML and described as a

SensorML process. SensorML is robust enough to handle the processing of data from virtually

any sensor whether mobile, in-situ or remotely sensed, or active or passive.

Figure 4. Conceptual Model for SensorML processes (Botts, 2007).

The SOS uses SensorML to describe the capabilities and metadata of any available sensor nodes.

The SPS accepts user scheduling plans described as SensorML processes which it then executes.

In OSWA Java objects defined by SensorML models are derived with the aid of XMLBeans.

These objects are then used by the two services, to encode or decode the XML data. A SWE

client may also use these objects as necessary.

Observations and Measurements Schema

The O&M schema is an encoding for observations and measurements retrieved from a sensor

network by the SOS. The purpose of the O&M is to alleviate the need for sensor-specific or

research independent data formats for describing data retrieved from sensor networks. An

observation is any event which has a value that describes some phenomenon. The term

measurement is used to identify a numeric quantity associated with the observation. The

phenomenon is a property of an identifiable object, which is the feature of interest of the

observation (Cox, 2007). For example, if a sensor network is deployed in a room to measure the

light intensity, the observed property would be lux, the photometric unit for describing

illuminance and the feature of interest would be light. An Observation model identifies the real-

world observation target for which observations are made; an extract of this model is illustrated in

Figure 5. This includes the value of the observed property and may include a description of the

process used to generate the result. Using our light example the value recorded in an office might

be 320 lux, the process could be the procedure used for recording light. Constructs exist for

describing the sampling time and result time for a time sequence of observations. An observation

may have metadata associated with it, such as a geospatial location. Observations can be

composed into collections, which share some commonalities such as the same sampling time or

the same feature of interest.

 The SOS is responsible for returning observational data encoded in the O&M specification,

which can be real-time data retrieved from a sensor network or archived data. In OSWA, O&M

objects are generated with the aid of XMLBeans, these are used by the SOS and by SWE clients.

Figure5. O&M Model Extract (Na, 2007)

Transducer Markup Language

TML defines a set of models which are used in describing the data captured from transducers,

along with methods for communicating real-time sensor data. TML includes information

necessary for the post-processing of data by the eventual recipient. A transducer is typically a

group of devices which can capture real-time data from multiple phenomena. Transducers work

in two ways, they can sense data or data can be sent to them to produce some sort of

predetermined result. An advantage of TML is that it makes it possible to share data across

application domains. It can be used for retrieving data from live sources or archived sources.

 TML is a recent addition to the SWE set of encodings, in our OSWA we are yet to

implement it and have no access to a transducer device. The SOS is primary responsible for

returning the sets of transducer results encoded in TML. It is the responsibility of the SOS to

communicate with the transducer device.

GF_FeatureType

Definition
isAbstract
typeName

AnyFeature

GF_PropertyType

definition
memberName

PropertyType

Process

ObservationCollection

Any

 Observation

Metadata
samplingTime
resultTime
resultQuality
Parameter

<<instanceOf>>

carrierOfCharacteristics

<<instanceOf>>

ObservedProperty

PropertyValueProvider

featureOfInterest

generatedObservation

member

result

procedure 1

0…*

1

0…*

1

0…*

1…*

1

Sensor Observation Service

The SOS is a service responsible for forwarding requests to the sensor network and retrieving the

recorded observational results. It acts as an intermediary between the client and real time or

archived sensor observation data. It provides a common interface to communicating with sets of

heterogeneous networks and archived data sources. The SOS communicates with the sensor

network via a base station node which acts as a bridge between the service and sensor nodes.

Observational results retrieved from the sensors are returned to the client encoded in the O&M

specifications. Metadata describing the sensor platform (hardware capacity, sensor types) is

returned in the SensorML encoding. SWE enabled clients can connect directly to the SOS to

retrieve near real-time data, or for complex queries the SPS can facilitate lifecycle management

and coordinate data retrieval from multiple SOS instances simultaneously.

 The SOS is composed of three core operations DescribeSensor, GetObservation and

GetCapabilities. GetObservation is responsible for returning observations from a sensor network,

GetCapabilities returns metadata information about the SOS service and DescribeSensor is

responsible for returning metadata information about the sensor nodes. Other operations include

RegisterSensor, and InsertObservation, which are used to support transactions along with six

enhanced operations including GetResult, GetFeaturesOfInterest, GetFeaturesOfInterestTime,

DescribeFeatureOfInterest, DescribeObservationType and DescribeResultModel.

 In OSWA we implement all the core operations described in the specification, they include

GetObservation, DescribeSensor and GetCapabilities. These interfaces provide sensor

descriptions and observational data from a heterogeneous set of sensor networks which include

TinyOS running on Mica2, MicaZ and Imote2, NICTOR sensors developed by NICTA running

Linux and SunSPOT sensors running Java. The architecture of the SOS is illustrated in Figure 6.

W
S
R
F

Sensor
Observation

Service

Client

Proxy

Sunspot
Connector

TinyOS
 Connector

Database
Connector

SOAP

SerialForwarder SunSpot
SerialForwarder

TCP/IP TCP/IP

Imote
Base Station

MicaZ
Base Station SunSPOT

Base Station
ZigBee

1...n

MySQL /
Postgress

1..n

NICTOR

TerraView

Figure 6. Architecture of the SOS

 A client connects to the SOS interface through the Globus WSRF library. The client can be a

user connecting with a SWE client or a service, such as the SPS, initiating the connection on

behalf of a user executable plan. Once the connection has been negotiated calls to the

DescribeSensor or GetCapabilities operations are directed through a proxy class to a database

connector. The database connector communicates with a PostgreSQL database to retrieve

metadata information describing the sensor hardware (DescribeSensor) and the offerings that are

available from the SOS (GetCapabilities). This information is encoded in SensorML and returned

to the client, which will use it to determine if the SOS service is capable of fulfilling an

observational request. The client will send a GetObservation request to retrieve observational

data from the sensor network. The request will contain a SQL-like syntax, information

encapsulated in the syntax may include; the sensor network type (vendor), the location of the

network, the observed phenomenon (light, temperature, acceleration, etc.), a threshold value (only

values temperature values greater than 0 degrees Celsius), the duration for which to sense the

data, the update frequency for observations, and the network ID’s of sensors to be queried. This

information may vary with each application context. The proxy will distribute the query request

to the appropriate network connector. It is the responsibility of the connector to communicate

with the base station and retrieve the observational results. In most cases this is facilitated by a

daemon which forwards queries to the serial port that the base station is connected to. The

observational data recorded by the sensors is then published on a TCP/IP port and is available for

the connector class to retrieve. In some cases, such as for the NICTOR sensors, this interface

occurs via a database. NICTORS are unique in that they publish their observational results

directly to a MySQL database. Once the observation data has been collected it is encoded into the

O&M specification and returned to the client.

 As part of a continued effort to enhance the performance of the SOS we have introduced a

cache mechanism into the SOS architecture. A bottleneck of the SOS has been the inability of

sensor networks to handle more than one query at a time, without some special operators or

middleware deployed onto the sensors. When an observational query is sent to a sensor network

that query must return a result before a consecutive query can be fulfilled. In a system with

multiple concurrent users, all users are interested in an immediate response, which can lead to a

major performance bottleneck. To overcome this bottleneck, a cache mechanism has been

developed that consists of a two-level cache chain incorporated with query aggregation rules and

a partial matching scheme to improve accuracy and performance. The cache mechanism handles

the parsing of cached queries and the predicting of results for current queries. Query results are

stored in a local cache, incoming queries are checked against historical ones and if the query

strings are similar and lie within a timeout the cached results are returned instead of sending a

query to the sensor network.

 The key components of the Cache mechanism are illustrated in Figure 7: where the cache

interfaces with the proxy and connector components of the SOS architecture.

Figure 7. Architecture of Cache Mechanism

A CacheManager maintains a cache chain, which gives orders of precedence to the available

caches. Upon receiving an observation request the CacheManager checks with the RuleEngine to

determine if it should query the Cache. The RuleEngine maintains a series of parameters, which

are designed to improve the accuracy of the Cache in order to maximize the cache hit rate. The

query SQL string is used as a key for caches. The CacheManager checks each Cache in the cache

chain and returns a hit if the SQL string exists. If the RuleEngine determines that the

CacheManager is unlikely to retrieve a cache hit, i.e. if the Cache is full, or entries are expired or

don’t match the key, control is returned to the CacheManager which redirects the query to the

physical sensor network. When the sensor network returns observational results the proxy will

forward these to the CacheManager which will update the cache chain along with parameters in

the RuleEngine.

The RuleEngine analyses the observational results and makes changes to the tolerance

parameters of Estimate and Threshold. Estimate is a numeric value given to the rate of change

observed in the environment by the sensor network. A small Estimate is given to a rapidly

changing environment; a larger estimate is assigned to a stable environment. The Estimate is

determined by analyzing the difference between consecutively recorded observations returned by

the sensor network. The RuleEngine uses the Estimate to determine if a query should be checked

against the Cache or not. If the current time exceeds the last update time of a cached result plus

the Estimate, then the request is redirect to the sensor network, because the environment is

Results

consult

cache results

CacheManager

Mem Cache Config

RuleEngine

Sensor Connector

Send queries

GUI Client

Query requests

SOS

Insert in queue

Pop out next job Send back results

Lock Manager

Proxy Interface

DB Cache
Config

External DB

Query

Sensor Network

changing fast, thus any observation cached will already be out of date. This ensures that the

Cache is queried only in circumstances where we are confident that a cache hit is as close as

possible to a correct reflection of the physical environment. The Estimate is initialized in the

configuration file and dynamically changed by the RuleEngine at runtime to reflect the changing

environment. The Threshold is a dynamically changing parameter that adapts to the cache size,

frequency of entries being cached and the values of entries.

 The Caches are strung together to form a cache chain. Typically, the memory cache

takes precedence over the database and is limited in size. Upon receiving an incoming

observation request, the SOS calls the CacheManager. If a cache is hit, the cached result is

returned as the observational result to the client. If a cache miss occurs, the CacheManager will

insert the observation request into a queue of observational requests to be retrieved from the

sensor network. When an item is removed from the queue, a second check is made by the

CacheManager to determine if any observational results have been cached while the current

request has been waiting in the queue. If a cache hit occurs, the result is returned to the client. If

there is a miss, the SensorProxy will query the physical sensor network. The observational results

retrieved are then written by the CacheManager to the Cache, following the precedence of the

cache chain, and fed back to the RuleEngine. A cache hit can occur if two cache keys (query

strings) are “similar”, which means that they are exactly the same or their values lie within the

tolerance Threshold. The responsibility of determining whether two keys are similar is given to

the Comparer. If a cache miss occurs, the Comparer can still use existing cached entries to

achieve a cache hit by using partial matching schemes. When writing a new entry to the cache, if

a cache entry already exists with the same key, the new observational results will replace the stale

data. Otherwise, a new key entry is allocated and a new result entry is placed into the cache. If the

cache is full, we employ two eviction strategies, Least Recently Used (LRU) and least rank.

Although other more complex cache eviction strategies exist, LRU is our primary choice because

it works well in an environment where there is a high temporal locality of reference in the

workload (that is, when most recently reference objects are most likely to be referenced again in

the near future). After being stored in the cache, the result is feedback to the RuleEngine.

Sensor Planning Service

The SPS is responsible for providing a high level planning, scheduling, tasking, collection,

processing, archiving of requests for all services. A SWE client can submit a SensorML encoded

plan to the SPS, the plan must contain the observation request, location of the sensors, duration of

the request and any other relevant metadata or post-measurement processing requirements. The

SPS is responsible for discovering available SOS instances from a registry of services and

capabilities, processing and scheduling the plan, managing subscription requests to the SAS and

forwarding notifications to the WNS. Use of the SPS should be limited to circumstances where

observational data from more than one SOS instances is required, where the connection duration

may persist over some period of time, and where post-processing, such as data aggregation from

several sensor networks or archived observation sources is required. We define these types of

requests as complex observational requests.

 In a similar fashion to the SOS there are both mandatory and optional operations which are

required to be implemented. GetCapabilities, DescribeTasking, Submit, and

DescribeResultAccess are all mandatory operations. GetCapabilities is responsible for returning

metadata information regarding the capabilities of the SPS. DescribeTasking returns information

about all parameters, which need to be set by a client, to perform a Submit request. The Submit

operation submits the user plan for scheduling and execution by the SPS. DescribeResultAccess

returns the SOS location that the SPS communicates with in order to access observational data

from a particular sensor. Optional operations which may also be implemented include

GetFeasability, GetStatus, Update and Cancel. GetFeasability provides feedback to the client on

the feasibility of executing the plan, this includes checking the validity of the parameters, and

locating a SOS instance and checking the instance can fulfill the request. GetStatus returns the

current status of the request. Update allows the client to update a previously submitted plan and

Cancel terminates a plan.

 In the OSWA we implement all the mandatory and optional operations. The architecture of

our SPS is based heavily on earlier design work our team did in developing a Grid resource

broker called Gridbus. The Gridbus Broker is a scheduler for distributed data-intensive

applications on global grids (Venugopal, Nadiminti, Gibbins, Buyya, 2008). The architecture of

the SPS is illustrated in Figure 8.

Figure 8. Architecture of the SPS

 A client will initialize a SOAP connection with the SPS using Globus WSRF libraries. If

it is the first time that the client is connecting to the SPS it may query the GetCapabilities

operation in order to retrieve metadata information about the service. The operation may return

details describing the hardware and software of the server, the organization responsible for

operating the server, the accessible sensor systems (in the form of SOS URI’s) along with the

physical location and observational phenomenon recorded by the sensor networks. The client may

send a DescribeResultAccess request to determine the SOS location responsible for a particular

sensor it is interested in. This data can then be used in the construction of the plan. The client will

also need to discover what parameters it needs to set in order to perform a Submit operation. It is

the responsibility of the DescribeTasking operation to provide this information. The client uses

DescribeTasking response to construct a user plan that will contain all the information necessary

to execute a GetObservation operation on a SOS instance, along with any pre-processing, post

W
S
R
F

Sensor
Planning
Service

Client

SOAP

Dispatcher Job Monitor

Scheduler

Service Monitor

Database

Persistence

SOS
Instance

Results

WNS
Instance

SAS
Instance

Core

Execution

Interpreter

Job Status & Results

Jobs

measurement processing, archiving, notification, duration and any other tasking it wishes to

perform on the observational data.

When the client performs a Submit operation an interpreter decodes the user plan and

constructs a job. A Job is an object that encapsulates all the content described in the user plan. If

the user plan specifies the client to be notified of the Job completion via the WNS (email, SMS,

Instant Message, phone call), the SPS registers the Job with the WNS. The state of the Job at

anytime throughout its lifecycle is maintained by a Hibernate database. The Job is placed in a

queue and scheduled for execution. A Service Monitor thread sits in the background and

discovers any new SWE service instances that may be accessible on the network. When the Job is

ready for execution a dispatcher subscribes to the SOS instance identified in the Job, the

dispatcher calls the GetObservation operation which communicates with the sensor network and

retrieves the observational results. Notifications are sent by the SOS back to the SPS as the Job

executes, these are forwarded to the Job Monitor which updates the Job state in the database.

Whenever the SPS receives a GetStatus request it retrieves the current state of the job from the

database and returns it to the client. Once the observation is completed the SOS returns the results

to the Job Monitor encoded in the O&M specification. The results are then written to the local file

system and if any post processing requirements are included in the plan these are performed.

Post-processing may include error checking, performing additional calculations or data

transformations. Upon completion the data is returned to the client, for more complex plans

which persist over time, or which may require alternative communication means (SMS, email

etc..) the WNS is notified which in turn notifies the client over the clients preferred protocol.

Sensor Alert Service

The SAS specification provides an interface for sensor nodes to advertise and publish alerts.

Clients can subscribe to data that matches specific criteria, for example when the battery is low or

if an observation value is returned above or below a threshold value. When this data becomes

available the SAS notifies the client. Intelligent sensors can connect to the SAS and make their

resources available to clients for subscription. The SAS uses the Extensible Messaging and

Presence Protocol (XMPP), a decentralized open XML-based protocol targeted at near real-time

communication, to publish sensor data.

 The SAS specification outlines ten operations that can be requested by a client and performed

by a SAS server. The required operations include GetCapabilities, Subscribe,

CancelSubscription, RenewSubscription, DescribeAlert, and DescribeSensor. The remainder of

the operations are optional, they include GetWSDL, Advertise, CancelAdvertisement and

RenewAdvertisement.

 The SAS is a new addition to the SWE method and therefore it is yet to be implemented in

the OSWA. We will briefly describe the proposed functionality of the interfaces, which are

illustrated in Figure 9.

Figure 9. SAS overview (Simonis, 2007)

 GetCapabilities returns metadata describing the abilities of the SAS implementation. The

Subscribe operation allows clients to subscribe to the advertised capabilities. CancelSubscription

terminates the subscription and RenewSubscription restarts the subscription. DescribeAlert

returns the structure of the data observed by a particular sensor. This includes the physical

phenomenon being observed and format of the recorded data. Upon receiving a return value the

client has enough information to Subscribe to the alert. GetWSDL returns the WSDL description

of the SAS interface. Advertise allows sensors to advertise their capabilities to a SAS instance.

Sensors or data producers calling Advertise will be added to the sensor pool and are available to

clients for subscription. CancelAdvertisement allows the advertising sensor source to terminate

the relationship and be removed from the pool. RenewAdvertisement restarts the advertisement.

Web Notification Service

The WNS is an asynchronous messaging service whereby users can subscribe and receive

notifications, over one of several protocols, on any interesting phenomena that may occur in any

SWE service. Any service can call the WNS to send a notification. The WNS handles two

notification methods, one-way, where notifications from services are forwarded to the client and

two-way where a response is expected from the client. A variety of communication clients can be

programmed into the WNS model, including email or SMS. This allows for users to program

their mobile devices to accept notifications describing processing errors or completed SPS plan

requests.

 Mandatory operations defined for the WNS include GetCapabilities, RegisterUser, and

DoNotification. Optional operations are DoCommunication and DoReply. GetCapabilities works

in a similar fashion to previously mentioned services, returning metadata about the WNS.

RegisterUser allows a client to register to receive notifcations and DoNotification initiates the

Sensor
SAS

XMPP

Client

getCapabilities:SOAP

DescribeAlert:SOAP

DescribeSensor:SOAP

Subscribe: SOAP

Advertise:SOAP

Join & Publish: XMPP

Join:XMPP

Alert:XMPP

WNS

alert

notification of the registered user. DoCommunication is called to initiate the communication with

the user, and DoReply accepts a user response to a two-way notification.

 In the OSWA we implement the mandatory operations described in the WNS specification.

The mandatory operations are used to perform one-way communication whilst optional

operations are only required for two-way notification. The architecture of the WNS is illustrated

in Figure 10.

W

S
R
F

Web
Notification

Service

Client

Account
Manager

Postgres

Database

User Registration

Notification

Register

Communication

Protocol

Communication
Protocol

Notification

SPS

Figure 10. The architecture of the WNS as implemented in OSWA

Clients can discover the capabilities of the WNS by calling the GetCapabilities operation, this

returns the available communication protocols implemented by the WNS. When a client calls the

RegisterUser operation on the WNS the user is assigned a registration ID by the Account

Manager which is then stored in a Postgres database. The client case can be any SWE service,

however it will typically by the SPS, as this is responsible for managing the scheduling of user

plans. When some interesting event occurs the SPS will send a DoNotification request to the

WNS. This is handled by a Notification class which discovers the user details from the Account

Manager and notifies an end-user client with an appropriate communication protocol. In the

OSWA we implement email as the preferred protocol, although an interface exists so virtually

any protocol can be easily added.

 In the following section we present the problem of gesture recognition and build and deploy a

gesture recognition application using the OSWA to access real-time observational data produced

by SunSPOT sensors, transform the observational results and visualize the data.

CASE STUDY: A GESTURE RECOGNITION APPLICATION

From GUIs to multi-touch surface pads, speech to gesturing, the ways we interact with

computers are diversifying more than ever before. To demonstrate the usability of the OSWA we

implemented a prototype arm gesture recognition system, trying to free the user from the

keyboard and mouse and incorporate a more natural gesture user interface utilizing sensors,

machine learning and sensor web. This requires the user to hold a sensor node in their hand and

perform a gesture with their arm. Each unique gesture has a different semantic meaning, this may

include a letter of the alphabet, moving to the next slide in a presentation or opening and closing a

browser window. In this section we introduce the problem of gesture recognition; we outline the

idiosyncrasies and challenges in building a gesture recognition system. We introduce the software

components which we need to meet these challenges and use the SOS to collect and process

gesture data, which we forward to a SWE client for visualization.

Human motion is an inherent continuous event and difficult to predict. Theoretically, the

human motion recognition problem is similar to voice recognition which is well studied. The

main difference is that human motion occurs in three dimensional space, which requires

measurements to be recorded for at least three axes. To recognize human gestures first we need to

capture gesture data and transmit it for further processing. This raw data can then be analyzed by

recognition algorithms in order to extract some useful meaning or content.

 SunSPOT (Sun Small Programmable Object Technology) is an open source software

package and hardware sensor node developed by Sun Microsystems. Developers can customize

both virtual machine source code and circuit board design to meet their own special requirements,

using Java to write applications and deploy them on the physical devices. SunSPOT devices come

with a light sensor, temperature sensor, and accelerometer integrated onto the sensor board.

There are two main challenges in for gesture recognition. The first challenge is

segmentation, i.e., how to identify the beginning and end of a motion in a multi-attribute data

stream. The second challenge is to recognize the segmented stream with a high level of accuracy.

To fulfill these requirements there are several challenges which need to be addressed (Li, Zheng,

& Prabhakaran, 2007):

• Similar motions may look different: Due to variance in speed and direction, similar

motions can have variations in a multi-attribute data stream. Figure 11, illustrates the raw

acceleration data produced by gestures of a small (10 centimeter) diameter circle and a

larger diameter (60 centimeters) circle.

Figure 11. Variations in acceleration data from the X, Y and Z axis produced by similar motions

• Similar motions vary in duration: Different people may perform the same gesture in

different ways. Even the same person can not perform exactly the same gesture at the

same speed twice. The sensor sampling rate may differ as well. This data series is

illustrated in Figure 12.

Figure 12. Variations in acceleration data from the X, Y and Z axis produced by similar gestures

with different durations

• Similar motions may have different meanings. Illustrated in Figure 13 are the

accelerometer readings from three gestures with similar motions, but with different

semantic meanings. Complete motions are concatenated by brief transitions, and the

motion candidates in a stream can contain these transitions. Hence, the difference

between a complete motion and motion candidates with missing or extra segments needs

to be captured.

Figure 13. Variations in acceleration data from the X, Y and Z axis produced by the motion of

three similar gestures with unique character outcomes

• Different motions may follow similar trajectories but in different directions: For example

Figure 14 illustrates a clockwise circle and a counter clockwise circle which follow a

similar trajectory but may produce two different results.

Figure 14. Variations in acceleration data from X, Y & Z axis produced by similar trajectories in

different directions

These challenges show that a solution to the gesture recognition problem is non-trivial. For a

gesture recognition system we first need to segment the data, i.e., we need to identify the start and

end of the data stream. We can achieve this manually with the SunSPOT nodes by holding and

releasing a button to explicitly mark the beginning and end of a gesture. To recognize the human

motion in the stream we can use a Hidden Markov Model (HMM) (Baum & Petrie, 1966).

Hidden Markov is defined as a set of states of which one state is the initial state, a set of output

symbols, and a set of state transitions. Each state transition is represented by the state from which

the transition starts, the state to which transition moves, the output symbol generated, and the

probability that the transition is taken. HMM are especially known for their applications in

temporal pattern recognition such as speech (Rabiner, 1989). In the context of gesture

recognition, each state could represent a set of possible hand positions. The HMM which holds

the highest probability of state transitions could be determined as the user’s most likely gesture.

HMM need to be trained before they can be used for recognition. It is important to determine the

appropriate number of states for each gesture to maximize accuracy and performance.

We implemented the gesture recognition system in the SOS component of the OSWA. We

only use the SOS because we are interested in near-real time observational data from the sensor

network. We have no need to schedule the data so we don’t use the SPS. Likewise there are no

notifications to be sent so we don’t use the WNS. The architecture of gesture recognition system

with relation to the SOS and its components is illustrated in Figure 15.

WSRF

SensorObservationService

Sun SPOT

Sun SPOT Base Station

Sun SPOT Serial Forwarder

Sun SPOT Proxy

Radio

TCP/IP

Recognition Module

Human Gestures

GUI Client

SOAP

Figure 15. Architecture of the gesture recognition system with relation to existing SOS

components

We develop a small application in Java which we deploy on the SunSPOT module, the

application uses the onboard accelerometer to capture arm movement and forward it to a base

station node. Acceleration data from all X, Y and Z axes (Figure 16) is significant as is tilt on all

3 of these axes. These 6 parameters are later analyzed by the Recognition Module. The base

station simply acts as a relay, forwarding packets to the SunSPOT sensor and forwarding the

observational results back to a serial port.

Figure 16. X, Y and Z axes on Sun SPOT accelerometer (SunSPOT, 2008)

One problem with directly using the serial port is that only one application can interact with

at any time. A solution to this is the Sun SPOT Serial Forwarder which opens a packet source and

lets applications connect over a TCP/IP socket.

 To interface with the SOS we implement a connector (SunSPOTConnector) and a

recognition (Recognizer) module. The architecture of these components with relation to existing

SOS components is illustrated in Figure 17. The SunSPOTConnector interfaces with the

SunSPOT Serial Forwarder. The recognition module is invoked by the SunSPOTProxy to analyze

the data series observed by the SunSPOT sensors. The SunSOPTObservationFormatter encodes

the observational result returned from the sensors into the O&M format, which is later returned to

the SWE client. The Recognizer performs the HMM transformation on the raw observation data.

Two open source components are used by the Recognizer, the Gesture and Activity Recognition

Toolkit (GART) (GART, 2008) and the Hidden Markov Model Toolkit (CU-HTK) (“HTK

Speech Recognition”, 2008). GART is a prototyping toolkit for the rapid creation of gesture-

based applications, developed by the Contextual Computing Group at the Georgia Institute of

Technology. It attempts to minimize the complexity of underlying machine learning algorithms

and encapsulates functions provided by CU-HTK. The CU-HTK is a portable toolkit for building

and manipulating HMM, it is primarily used in speech recognition research. CU-HTK was

developed in partnership with the Machine Intelligence Laboratory at Cambridge University and

Microsoft.

Prior running the experiment, we use the SunSPOT sensors to produce a segmented sample

of acceleration data for the HMM. We do this by running a small host side application and

repeating a set of predefined training gestures. The resulting training data is maintained as a set of

XML files that hold all raw gesture samples along with their names and configuration arguments.

All consecutive observational data produced during the use of the system is used to improve on

the initial gesture library and build up an experience set. This training need only be done once,

during execution the CU-HTK loads the experience set from disk and compares it to the recorded

gesture data. The identified gesture data is encapsulated in the O&M encoding by

SunSOPTObservationFormatter and returned to the SWE client

SensorProxy

Sensor Observation
Service

+parseObservation()

SunSPOTObservationFormatter

+getObservation()

SunSPOTProxy

+connect()

SunSPOTConnector

+recognize()

Recognizer

GART

inherents

SensorProxy

Sensor Observation
Service

+parseObservation()

SunSPOTObservationFormatter

+getObservation()

SunSPOTProxy

+connect()

SunSPOTConnector

+recognize()

Recognizer

GART

inherents

Figure 17 Architecture of the SunSPOT proxy and connector

 The GUI client is a simple SWE client deployed as a Java desktop application that

interfaces with user. The client uses WSRF to connect to the SOS and when a gesture is identified

it prints the result in a text box. The gesture result consist of a letter of the alphabet which

mapped to a particular motion recorded by the sensors. Figure 18 is a screenshot of system in

action. For illustration purposes the GUI client, SOS instance and Sun SPOT Serial Forwarder are

running on a single machine. One gesture is performed and the raw acceleration data series is

printed out in the console. The identified gesture is returned and printed in GUI client.

Figure 18. Gesture recognition system in action

To evaluate the performance of the gesture training and recognition system, test cases were

chosen from EdgeWrite (“EdgeWrite Text”, 2008) a unistroke text entry method developed by

University of Washington. Its benefits include increased physical stability, tactility, accuracy, and

the ability to function with minimal sensing. Instead of testing a whole character set in this

experiment, we selected two sets of characters. As illustrated in Figure 19, each set has its own

characteristics. In set S1, the shape and track of each gesture is unique. The Recognizer should be

able to identify these characters easily. In set S2 the six gestures share similarities among each

other. When compared to S1 we expect the level of recognition accuracy for S2 to be lower. We

want to know the difference of accuracy between these two gesture sets.

S1: S2:

Figure 19: Two character sets

 Because the HMM is a supervised learning algorithm more training samples will lead to a

higher recognition accuracy. So for each gesture set we train two versions of the sample sets:

� Version 1(V1): 5 samples per gesture. User specific, trained by one developer

� Version 2(V2): 10 samples per gesture. Non user specific (relative), trained by two

individuals each taking turns in producing gestures

 Compared with V1, V2 contains more training samples, so it should get higher accuracy

result. When we run each of these sample sets on the two gesture sets we get a total of four

training sets, these are illustrated in Table 1.

 S1 S2
V1 N1 N3

V2 N2 N4

Table 1. Improved Sample matrix

10 gestures were performed on each of the training sets to evaluate the performance of the

system. Table 2 depicts a summary of the accuracy after the experiment. Generally, the

recognition accuracy of S1 is higher than S2, which is to be expected because characters in S1 are

unique. V2 achieves higher accuracy for both character sets because it contains more training

samples than V1.

 S1 S2
V1 85% 75%

V2 96% 78%

Table 2. Summary of accuracy

Tables 3, 4, 5 & 6 are confusion matrices which expand on the recognition accuracy detail

for each of the four training tests in Table 2. A confusion matrix is used in machine learning to

illustrate correct and incorrect classification results. For each confusion matrix the x-axis

represents the actual gesture performed and the y-axis represents the recognized gesture by

system. For example, in Table 3, cell nn (shadowed area) is 70% which means 70% of gesture n

was correctly recognized by system. On the other hand, gesture n has been incorrectly recognized

as a and g at 20% and 10% respectively.

85% a g n t x s

a 70% 30% 0 0 0 0

g 0 100% 0 0 0 0

n 20% 10% 70% 0 0 0

t 0 20% 0 80% 0 0

x 0 10% 0 0 90% 0

s 0 0 0 0 0 100%
Table 3. Confusion matrix of N1

96% a g n t x s

a 100% 0 0 0 0 0

g 0 100% 0 0 0 0

n 0 0 100% 0 0 0

t 0 0 0 100% 0 0

x 10% 0 0 0 90% 0

s 0 10% 0 0 0 90%
Table 4. Confusion matrix of N2

75% o c f g q Ø

o 70% 0 0 0 20% 10%

c 0 30% 0 50% 0 10%

f 0 0 90% 10% 0 0

g 0 0 0 100% 0 0

q 10% 0 0 40% 60% 0

Ø 0 10% 0 0 0 100%
Table 5. Confusion matrix of N3

78% o c f g q Ø

o 80% 0 0 0 20% 0

c 0 90% 10% 0 0 0

f 0 0 90% 0 10% 0

g 0 0 0 40% 60% 0

q 10% 0 0 20% 80% 0

Ø 0 10% 0 0 10% 90%
Table 6. Confusion matrix of N4

Statistically, the HMM recognition engine works well with a minimum of 75% accuracy.

Using more training samples, it easily reaches 96%. As we predicted, the higher the level of

training samples, the greater the level of accuracy we can expect from the system. The more

motion is recorded about one particular user, the more the system can recognize their actions. In

this example we use letters of the alphabet because they offer a suitable amount of complexity in

gesture variance. The accuracy of results produced by alphabet set gives us confidence in the

performance of our system. The core concept of gesture recognition can be expanded to a variety

of deployment scenarios. A user can use perform hand gestures during a presentation which may

result in changing slides, or initializing a multimedia component. The user does not need physical

access to the computing system and is free to be mobile and interact with the audience during the

course of the presentation.

In this experiment, we successfully implemented a gesture recognition system using

SunSPOT sensors, a machine learning algorithm and OSWA. The SOS was used to retrieve real

time observation data from the SunSPOT sensors. The raw observation results were transformed

using a Gesture Recognition and a HMM toolkit and forwarded to a SWE client for visualization.

Additional development work which was required to implement the application consisted of:

introducing an application specific Connector class to the SunSPOT proxy interface, a data

formatter class to encapsulate the application specific acceleration data, a recognition module to

perform post-processing on the raw observational data, and the visualization capabilities in the

form of a text box on the SWE client. Besides these modifications the SOS provided all the

necessary architecture components to fulfill our objective. With the additional components added

to the architecture we could run our experiment and measure the accuracy of the gesture

recognition algorithm. The algorithm saw improved performance in accuracy with the help of

more training samples, reaching 96% accuracy at its peak. The combination of OSWA and

gesture recognition has the potential to free the user physical access to a computing system and

provide them with an accurate alternative.

CONCLUSION AND FUTURE WORKS

In this chapter we have introduced Sensor Web and the OGC SWE method. Sensor Web provides

a conceptual framework where geographically distributed services can provide access to

heterogeneous sensor resources regardless of the deployment scenario. The SWE method outlines

a set of common data description formats and service interfaces which when implemented can

realize the vision of a Sensor Web. Application independent data description formats are

important for sharing data from heterogeneous sensor resources among independent deployment

scenarios. A common set of Service descriptions encourages the development of services by

research organizations and businesses to communicate with one another in order to achieve cross-

organizational collaboration, mutually benefiting stakeholders. OSWA is one implementation of

the SWE Method which implements services as stateful web services using WSRF. OSWA is

developed in Java and implements all the mandatory operations defined for the SOS, WNS and

SPS, along with encodings for SensorML and O&M schema. The SOS provides access to a set of

heterogeneous sensors and sensor operating systems including hardware developed by Crossbow

running TinyOS, SunSPOT’s running Java and NICTOR sensors running Linux. The SPS is built

on the architecture of the Gridbus Broker, a mature broker application. A gesture recognition

application has been presented in order to demonstrate the functionality of the SOS, a major

OSWA component. This case study illustrates the ability of OSWA to meet the needs of almost

any deployment scenario. Future developments which we intend to commit resources to include:

• An operator service, capable of hiding hardware implementation details from users. Users

could use the operator service to automatically deploy and update applications on the

sensor nodes without the need to physically access the sensor network. An overlay

network would be deployed on the sensors which would be hardware transparent and

capable of fulfilling the demands of the operator service. The overlay network would

manage energy efficiency, security and automatic network configuration.

• A GUI IDE providing access to service operations and allowing users to visually construct

applications, service plans and sensor deployments. Users could drag-and-drop GUI

elements which would result in the generation of code that could automatically be

deployed on the sensor network by the operator service. Users could visually construct

SPS plans and describe service interactions.

• Data driven workflows, which could be deployed on the overlay network and across

services. Sensor observations could automatically trigger service interactions and perform

complex tasks.

• An implementation of the SAS along with the TML encoding.

REFERENCES

Barr, R., Bicket, J,C., Dantas, D,S., Du, B., Kim, T,W,D., Zhou, B., Sirer, E, G., (2002) On the

Need for System-Level Support for Ad hoc and Sensor Networks. Operating Systems Review,

36(2):15.

Baum, L, E., & Petrie, T. (1966) Statistical Inference for Probabilistic Functions of Finite State

Markov Chains. Ann. Math. Statist. Volume 37, Number 6.

Botts,M. (2007). OpenGIS Sensor Model Language (SensorML) Implementation Specification,

Open Geospatial Consortium Inc. Retrieved on November 17, 2008 from

http://portal.opengeospatial.org/files/?artifact_id=21273

Botts, M., Percivall, G., Reed, C., & Davidson, J. (2007). OGC Sensor Web Enablement:

Overview And High Level Architecture, Open Geospatial Consortium Inc. Retrieved on

November 3, 2008, from http://portal.opengeospatial.org/files/?artifact_id=25562

Cox, S. (2007). Observations and Measurements – Part 1 – Observations schema, Open

Geospatial Consortium Inc. Retrieved on November 5, 2008, from

http://portal.opengeospatial.org/files/?artifact_id=22466

(2008) EdgeWrite Text Entry, Retrieved June 6, 2008 from http://depts.washington.edu/ewrite

Fok, C., Roman, G., Lu, C. (2005). Mobile agent middleware for sensor networks: An application

case study. In Proc. The 4
th
 int Conf. Information Processing in Sensor Networks (pp. 382-387),

UCLA, Los Angles, California, USA.

(2008) GART. Retrieved on June 6, 2008 from http://wiki.cc.gatech.edu/ccg/projects/gt2k/gt2k.

Gaynor, M., Moulton, S., Welsh, M., LaCombe, E., Rowan, A., & Wynne, J. (2004). Integrating

WSN with the Grid, IEEE Internet Computing 8:32-39

Heinzelman, W, B., Murphy, A,L., Carvalho, H, S., & Perillo, M,A., (2004) Middleware to

support sensor network applications, IEEE Network, 18(1):6-14.

(2008) HTK Speech Recognition Toolkit, Retrieved June 6, 2008 from http://htk.eng.cam.ac.uk

Li, C., Zheng, S. Q., & Prabhakaran, B. (2007) Segmentation and recognition of motion streams

by similarity search. ACM Trans. Multimedia Comput. Commun. Appl. 3, 3.

Li, S., Son, S., Stankovic, J. (2003). Event Detection services using data service middleware in

distributed sensor sensor networks. In Proc. The 2
nd

 Int. Workshop Information Processing in

Sensor Networks (pp.502-517), Palo Alto, California, USA.

Moodley, D., & Simonis, I. (2006). New Architecture for the Sensor Web: the SWAP-Framework,

Semantic Sensor Networks Workshop 2006, 5th International Semantic Web Conference ISWC

2006, Athens, Georgia, USA.

(2008) Open Geospatial Consortium Inc. Retrieved 15 December 2008, from

http://www.opengeospatial.org

Na, A. (2007). Sensor Observation Service, Open Geospatial Consortium Inc. Retrieved on

November 25, 2008 from

http://portal.opengeospatial.org/files/index.php?artifact_id=26667&passcode=xk3nxmxma23st1y

6g6hh

Rabiner, L.,R., (1989) A tutorial on hidden Markov models and selected applications inspeech

recognition, Proceedings of the IEEE, Volume 77, Issue 2.

Sawada, H., Hashimoto, S. (1997) Gesture recognition using an acceleration sensor and its

application to musical performance control. Electronics and Communications in Japan 80:5.

Simonis, I. (2004). Sensor Webs: A RoadMap. In Proc. of the 1st Goettinger GI and Remote

Sensing Days, Institute for Geoinformatics, University of Muenster.

Simonis, I. (2007). OGC Sensor Alert Service Implementation Specification, Open Geospatial

Consortium Inc. Retrieved on November 25, 2008 from

http://portal.opengeospatial.org/files/index.php?artifact_id=24780&version=1&format=pdf

Suman, N., Jie, L., Feng, Z. (2006). Challenges in Building a Portal for Sensors World-Wide.

Paper presented at the First Workshop on World-Sensor-Web: Mobile Device Centric Sensory

Networks and Applications, Boulder, CO, USA.

(2008) SunSpotWorld - Home of Project Sun SPOT, Retrieved June 6, 2008 from

http://www.sunspotworld.com

Tao, V., Liang, S., Croitoru, A., Haider, Z. & Wang, C. (2004). GeoSWIFT: Open Geospatial

Sensing Services for Sensor Web. In: Stefanidis, A., Nittel, S. (eds), GeoSensor Networks

(pp.267-274), CRC Press.

Tham, CK., Buyya, R. (2005). SensorGrid: Integrating sensor networks and grid computing, CSI

Communications 29:24-29.

Venugopal, S., Nadiminti, K., Gibbins, H. & Buyya, R. (2008). Designing a Resource Broker for

Heterogeneous Grids in Software: Practice and Experience (pp. 793-825), Volume 38, Issue 8,

ISSN: 0038-0644, Wiley Press.

KEY TERMS & DEFINITIONS

Sensor Web
The combination of sensor networks and a service oriented architecture, so that

sensors are viewed as resources which can be controlled and accessed over the

World Wide Web.

SensorML
A set of standard models and XML schema as defined in the Sensor Web

Enablement method by the Open Geospatial Consortium for describing sensor

systems and processes.

Observations & Measurements
A set of standard models and XML schema as defined in the Sensor Web

Enablement method by the Open Geospatial Consortium for describing physical

phenomena observed by sensor systems.

TML
An XML schema and encoding as defined in the Sensor Web Enablement

method by the Open Geospatial Consortium for describing real-time streaming

data recorded by transducers.

Sensor Observation Service
A web service interface definition as defined in the Sensor Web Enablement

method by the Open Geospatial Consortium for requesting observations from

sensor networks and observation repositories.

Sensor Planning Service
A web service interface definition as defined in the Sensor Web Enablement

method by the Open Geospatial Consortium for scheduling and planning

observational requests to sensor networks.

Web Notification Service
A web service interface definition as defined in the Sensor Web Enablement

method by the Open Geospatial Consortium for the transmission of messages

between SWE services.

Sensor Alert Service

A web service interface definition as defined in the Sensor Web Enablement

method by the Open Geospatial Consortium for publishing and subscribing to

alerts from sensors.

